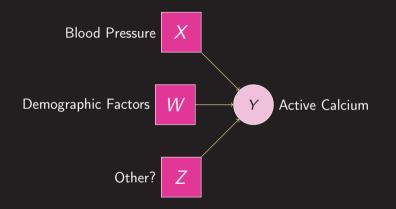
Measurement Error Corrections with Non-IID Auxiliary Data

Dylan Spicker*, Michael Wallace, Grace Yi

University of Waterloo

Thursday June 10, 2021


My Goals Today

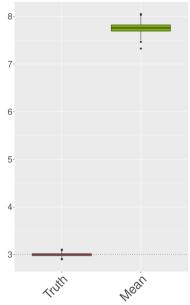
- 1. Introduce what measurement error is.
- 2. Demonstrate how measurement error impacts analyses.
- 3. Show the common corrections used to overcome these concerns.
- 4. Provide an alternative method which makes more realistic assumptions.

An Illustrative Example

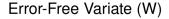
Can we determine active calcium in a patient from factors which are cheaper to measure?

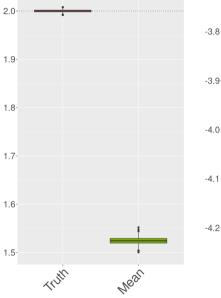
An Illustrative Example

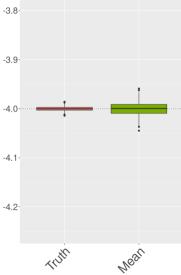
We care about long-term average blood pressure, but we can only measure current blood pressure.


Measured Blood Pressure = True Blood Pressure + Noise

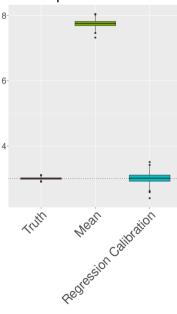
Simulated Dataset

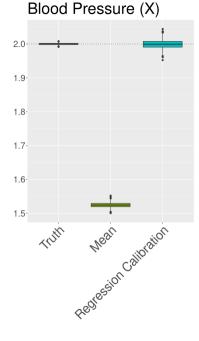

Patient #	Active Calcium	Demo. Factors	True BP	Measured BP (1) X + U	Measured BP (2) X + U	Measured BP (3) X + U	Measured BP (4) $X + U$
1	Y_1	W_1	X_1	X_{11}^{*}	X ₁₂ *	X ₁₃ *	X_{14}^{*}
2	Y_2	W_2	X_2	X_{21}^{*}	X_{22}^{*}	X_{23}^{*}	X_{24}^{*}
3	Y_3	W_3	X_3	X_{31}^{*}	X_{32}^{*}	X_{33}^{-3}	X_{34}^{-1}
n	Y _n	W _n	X _n	X_{n1}^*	X _{n2} *	X _{n3} *	X _{n4} *


Goal: Determine the relationship given by E[Y|X, W], using linear regression.

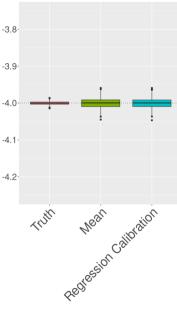

Intercept

Blood Pressure (X)

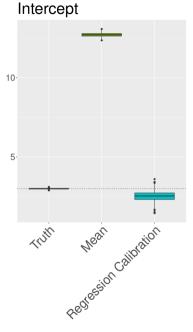


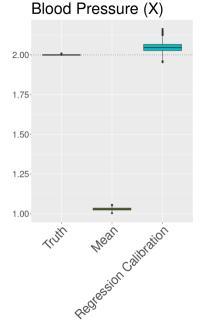


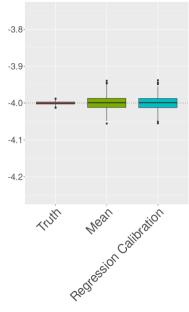
Basic Correction: Regression Calibration



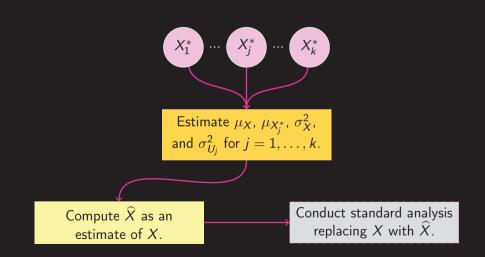
Intercept




Error-Free Variate (W)


More Realistic Simulated Dataset

Patient #	Active Calcium	Demo. Factors	True BP	BP (1)	Measured BP (2) $X + U_2$	Measured BP (3) $X + U_3$	Measured BP (4) $X + U_4$
1	Y_1	W_1	X_1	X_{11}^{*}	X ₁₂ *	X ₁₃ *	_
2	Y_2	W_2	X_2	X_{21}^{**}	_	X_{23}^{*}	X_{24}^{*}
3	Y_3	W_3	X_3	X_{31}^{*}	X_{32}^{*}	_	_
n	Y _n	W _n	X _n	X _{n1} *	_	X _{n3} *	X_{n4}^*



Error-Free Variate (W)

Our Suggestion: Generalized Regression Calibration

DylanSpicker / rcalibration

 • O Code
 © Theme
 • A Mode
 • Pages
 • Weil
 • Secury
 • Engine

 • P made
 • P made
 • P made
 • P made
 • Engine
 • Engine
 • P made

 • P made
 • P made
 • P made
 • P made
 • Engine
 • P made
 • P made

 • P made
 • P made
 • P made
 • P made
 • P made
 • P made
 • P made

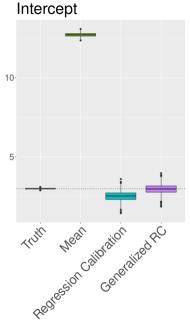
 • P made
 • P transh
 <td

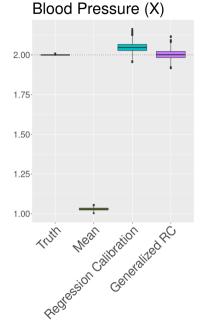
An R package is available at https://github.com/DylanSpicker/rcalibration.

Installation

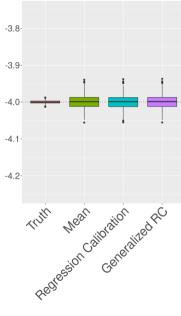
nstall the latest version from github. Note, this requires devtools

install.packages("devtools")
devtools::install_github("dylanspicker/rcalibration"


Usage


he following example shows a brief simulation of the package in use

Using 'MASS' for 'mvenorm library(rcalibration) library(MASS)


sc.sees(2141235)

Normal Example

Error-Free Variate (W)

Works on any correction technique assuming replicates to estimate variance components.

- Works on any correction technique assuming replicates to estimate variance components.
- Can accommodate multiplicative or additive measurement error models.

- Works on any correction technique assuming replicates to estimate variance components.
- Can accommodate multiplicative or additive measurement error models.
- Can accommodate biased proxies.

- Works on any correction technique assuming replicates to estimate variance components.
- ► Can accommodate multiplicative or additive measurement error models.
- Can accommodate biased proxies.
- Results in asymptotically normal estimators.

Conclusions

By adjusting the underlying parameter estimators we can allow for violations of the assumption that replicated measurements are identically distributed in many common measurement error correction procedures.

This is done with little additional complexity.

Thank You.

Dylan Spicker dylan.spicker@uwaterloo.ca | www.dylanspicker.com